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The issues that prevent the development of efficient and stable algorithms for fermion Monte Carlo calcu-
lations in continuum systems are reexamined with special reference to the implications of the ‘‘plus-minus’’
symmetry. This is a property of many algorithms that use signed walkers, namely, that the dynamics are
unchanged when the signs of the walkers are interchanged. Algorithms that obey this symmetry cannot exhibit
the necessary stability. Specifically, estimates of the overlap with any antisymmetric test function cannot be
bounded away from zero in the limit of many iterations. Within the framework of a diffusion Monte Carlo
treatment of the Schro¨dinger equation, it is shown that this symmetry is easily broken for pairs of walkers
while at the same time preserving the correct marginal dynamics for each member of the pair. The key is to
create different classes of correlations between members of pairs and to use~at least! two distinct correlations
for a pair and for the same pair with signs exchanged. The ideas are applied successfully for a class of simple
model problems in two dimensions.

PACS number~s!: 02.70.2c, 05.30.2d, 03.65.Ge

I. INTRODUCTION

This paper continues a discussion of possible Monte Carlo
algorithms intended to solve the nonrelativistic Schro¨dinger
equation for fermions in continuous space. In particular, it
succeeds the paper of Liu, Zhang, and Kalos@1# ~LZK !; see
also references therein.

We take the opportunity here to sketch the basic issues in
a very general way. Wave functions are represented by en-
sembles of points in the configuration space required for the
physics of the problem. Each such point usually contains
Cartesian coordinates for all of the interacting particles.
Since those coordinates change following stochastic dynam-
ics appropriate for the mathematical problem, it is reasonable
to think of them as random walkers in configuration space.
For an N-body system in three dimensions
R5$x1 ,y1 ,z1 ,x2 ,...,yN ,zN%. More generally, we may deal
with ensembles of such walkers,R5$R1 ,R2 ,...,RK%. In ei-
ther case, we will introduce stochastic dynamics that produce
random walks forR or for R. On the average, the density of
walkersx (n)(R) at then-th stage of such a walk forR sat-
isfies

x~n!~R!5lE g~R,R8!x~n21!~R8!dR8 ~1!

or the global density of the entire population satisfies

X~n!~R!5LE G~R,R8!X~n21!~R8!dR8. ~2!

As with all Monte Carlo calculations, a solution of the
equations is represented as a sum ofd functions:

c~R!>( d~R2Rm!, ~3!

where $Rm% is the set of positions attained by a random
walker, possibly after some initial equilibration. The dynam-
ics must be such that

lim
n→`

x~n!~R!5c~R!, ~4!

wherec(R) is a solution of the Schro¨dinger equation.
In general, we will use some test functionfT(R) to

project the walker positions so as to obtain integrals of solu-
tions of the Schro¨dinger equation. For fermion systems,fT
must be an appropriately antisymmetric functionfAT(R). To
solve a fermion problem within this framework, the dynam-
ics must be such that

lim
n→`

E x~n!~R!fAT~R!dR5CE cA~R!fAT~R!dR, ~5!

where cA(R) is an antisymmetric solution of the Schro¨-
dinger equation andC is a nonzero constant independent of
fAT .

Multiplying the Schro¨dinger equation,

HcA~R!5EAcA~R!, ~6!

by fAT(R), integrating over all coordinates, and using the
hermiticity of H, one obtains

EA5
*cA~R!HfAT~R!dR

*cA~R!fAT~R!dR
5
limn→`*x~n!~R!HfAT~R!dR

limn→`*x~n!~R!fAT~R!dR

5

(
m

HfAT~Rm!

(
m

fAT~Rm!

. ~7!

Collective dynamics, if used, must produce distributions
X(n)(R) of ensemble positions such that
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lim
n→`

E •••E X~n!~R!fAT~Rj !dR1•••dRk

5C8E cA~R!fAT~R!dR

for every j . That is, the marginal distribution for everyRj
must project tocA in this way.

It is by now well known that the ordinary dynamics used
in Green’s-function or diffusion Monte Carlo calculations
have symmetric functions as their asymptotic distributions.
Thus the integrals in both numerator and denominator of Eq.
~7! have zero as their limits. We will not review here all of
the various methods that have been invoked to overcome this
essential difficulty. Instead, we concentrate on the general
ideas following Arnowet al. @2#, Zhang and Kalos@4# ~ZK!,
and LZK.

We consider some form of collective dynamics involving
random walkers, equal numbers of which carry positive and
negative signs. The dynamics are ‘‘collective’’ in the sense
that all or many members of the ensemble determine the
future stochastic behavior of any member. The different
signs help to represent the antisymmetric wave function
~which is not everywhere positive! and also offer the possi-
bility that cancellation can occur between walkers of differ-
ent signs, and that the resulting population will be such that
the integrals that appear in Eq.~7! will be asymptotically
different from zero. We call dynamics that produce such a
result ‘‘asymptotically stable.’’ If one is willing to let the
population of walkers grow exponentially, with a sufficiently
large coefficient, then asymptotic stability is easy to attain.
The penalty is that the variance decreases only as the inverse
of the logarithm of the computing time rather than as its
inverse.

In several papers, ZK introduced the notion of the ‘‘plus-
minus’’ symmetry, a way of considering whether some pro-
posed collective dynamics might be asymptotically stable.
The criterion is simple: suppose that at a certain stage of a
collective dynamics, the configurationR consists of equal
numbers of positive walkers:$Rk

1% and of negative walkers
$Rk

2%. Suppose also that one interchanges the two subpopu-
lations

Rk
1→Rk

2 ; Rk
2→Rk

1 ~8!

for everyk. If the dynamics cannot distinguish between the
original collective configuration and the interchanged con-
figuration, then both will be represented equally in the as-
ymptotic population. In that case, the integrals in Eq~7! will
again be zero. Therefore, a necessary condition for stability
is that the dynamics breaks the plus-minus symmetry.

The collective dynamics of the kind introduced by Arnow
et al. @2# clearly do not break this symmetry. Although ZK
believed that their introduction of a collective importance
sampling had that effect, it is not so: importance sampling
cannot break the symmetry when the original dynamics have
not done so. This applies also to the versions of the dynamics
of Arnow et al. that have been used by Anderson and his
co-workers@3#. Although these forms of collective dynamics
are very likely to slow down the decay to the symmetric
distribution, they cannot entirely stop it. Also, the issue re-

mains of the scaling to large systems. These forms of collec-
tive dynamics involve large ensembles of interacting walk-
ers, and although the scaling has not been studied
experimentally, it is plausible that as the system size grows,
the size of the interacting ensemble will have to be made
larger. Since the complexity of the method appears to grow
with the square of the ensemble size, it is not obviously
promising.

LZK exhibited an exact method using at most pairs of
walkers for the Monte Carlo integration of the Schro¨dinger
equation so as to yield solutions antisymmetric in the origin.
Although the method applied to highly artificial model
problems—particles in various enclosures with no potentials,
or else with potentials satisfying certain artificial
inequalities—it is a provocative result, one that we will sum-
marize here. Direct reference to the paper would be very
helpful.

Consider a two-dimensional enclosure~such as a paral-
lelogram! in which a solution to the Schro¨dinger equation
that is antisymmetric on reflection in the origin is required.
Divide the enclosure into four subregions by two orthogonal
straight lines. Walkers are started in one of these four subre-
gions~either one that contains both of the reflections of two
of the other subregions in the lines!. Walkers that cross either
of the two lines for the first time are turned into two of
opposite sign~each with a weight of one-half! where the new
point is the reflection in the origin of the original. The paths
of the two walkers are thereafter constrained to be reflections
on the line first touched. The first passage across the orthogo-
nal line—which occurs with probability one—is guaranteed
to be at the same point. Two walkers of opposite sign that
arrive at the same point cancel each other and can be
dropped from consideration.

The essential features of LZK, which seem important to
retain, are the following. The dynamics couples a positive
and a negative walker using two distinct correlations in such
a way that the marginal dynamics for each walker is correct.
Cancellation between plus and minus walkers is possible.
The outcome is that the symmetry is broken by a geometric
construction, not dependent on unknown features of the so-
lution, such as the nodal surface.

The generalization of LZK to problems with arbitrary po-
tentials in many dimensions is not at all obvious. This paper
is devoted to one possible extension. Since the motivation is
easiest to give, and the applications carried out lie within a
simple diffusion Monte Carlo framework, we first devote a
short section to an exposition of the algorithmic character of
the importance-sampled diffusion Monte Carlo method for
the Schro¨dinger equation.

II. DIFFUSION DYNAMICS

Following the general structure of the Green’s-function
Monte Carlo approach, Ceperley and co-workers@5# showed
that with the use of a finite time step,d, the Schro¨dinger
equation in imaginary time, modified by an importance sam-
pling transformation, can be integrated by a particularly
simple Monte Carlo procedure. We do not propose to repeat
the derivation here nor any extensive discussion; they are
well known. Rather, we need simply to recall its essence.

Consider a HamiltonianH52 1
2¹21V(R). Ceperley de-

rives the evolution of the Schro¨dinger equation in imaginary
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time t from the operation of exp[2t(H2ET)] upon some
initial function c(R,0):

c~R,t!5exp@2t~H2ET!#c~R,0!. ~9!

ET is a number that approximates to the lowest eigenvalue.
Let fT(R) be some trial function that approximates to the
ground state solution,c0(R), and

f ~R,t!5fT~R!c~R,t!exp~ETt!. ~10!

Then a random walk, which consists of three steps in turn,
will generate a population of walkers whose density is
f (R,t). If the method is iterated long enough,

f ~R,t!5fT~R!c0~R!exp@~ET2E0!t# ~11!

from which estimates of the eigenvalue and other informa-
tion that relates to the solutionc0(R) may be derived.

The three steps that take a walker at positionRm and
imaginary timet into a positionRm11 at time t1d are as
follows.:

~1! Drift: a displacement by the many-dimensional vector

d¹W fT~Rm!/fT~Rm!. ~12!

~2! Diffusion: a displacement by the (32N)-dimensional
random vectorAdUW , where each component ofUW is a
Gaussian random variable with mean zero and variance one.

The outcome of steps~1! and ~2! is that the walker is
moved to

Rm115Rm1d¹W fT~Rm!/fT~Rm!1AdUW . ~13!

~3! Branching: After the diffusion step, each walker is re-
placed by a random number of identical walkers, the average
number now being

exp$2d@HfT~Rm11!/fT~Rm11!2ET#%. ~14!

In particular, iffT(R) were an eigenfunction and

HfT~R!/fT~R!5ET , ~15!

then there would be no branching at all: a walker lives for-
ever.

III. CORRELATED PAIRS OF PLUS-MINUS WALKERS

We are now in a position to consider how to introduce
correlated walks of pairs of walkers that carry opposite signs,
guided by the principles derived from LZK.

If the Monte Carlo algorithm is indeed to involve pairs
(Rm

1 ,Rm
2) that live forever or for a long time, then there

should be little branching of the two independent of each
other. One way to assure this is to use the symmetric ground
state as an importance function. We shall assume that it is
known. In fact we will construct model problems starting
from an assumed ground statec0(R). Furthermore we will
set

ET5Hc0~R!/c0~R!. ~16!

To assure correct marginal dynamics, we simply apply to
each of the walkers (Rm

1 ,RM
2) the three steps outlined in the

previous section.
One simple class of correlations between the two walkers

relates the Gaussian vectors (U1,U2) that are used in the
diffusion steps for (Rm

1 ,Rm
2), respectively. Note that the

same Gaussian distribution is to be sampled at every diffu-
sion step. Thus we can correlate theU1 with U2 in many
ways that are technically easy to achieve. For example, put-
ting U15U2 or U152U2 achieves a potentially useful
kind of correlation between the positive and the negative
walkers, while trivially preserving the correct marginal dy-
namics. We call these ‘‘parallel’’ correlation dynamics and
‘‘antiparallel’’ correlation dynamics, respectively.

Within that basic class of correlations, there are clearly
many ways of relating the Gaussian vectors (U1,U2). We
introduce one more as of particular interest. Suppose that the
positions of the two walkers just after each has been moved
by a ‘‘drift’’ step areRm8

1 andRm8
2 , respectively. Construct

the hyperplane that is the perpendicular bisector of the line
from Rm8

1 to Rm8
2 . Now let U2 be the reflection ofU1 in

that hyperplane. What is special about this relation of the
vectors is that the relative distanceuRm

12Rm
2u of successive

positions is a one-dimensional variable that undergoes a ran-
dom walk, which, with probability one, brings the pair even-
tually to positions whereRm

15Rm
2. In other words, this ‘‘re-

flected’’ correlation dynamics guarantees eventual
cancellation of the pair (Rm

1 ,Rm
2). This cancellation will be

efficient even in many dimensions. It can be accelerated by
sampling pairs (Rm

1 ,Rm
2) from the kernel constructed from

the difference of the Green’s functions centered atRm8
1 and

Rm8
2 , respectively, enforcing the reflection symmetry in the

new values ofRm
1 andRm

2.
We may now ask which of the three kinds of correlation

dynamics is most promising for a fermion algorithm based
on diffusion dynamics. Since we have stressed the need for
cancellation of pairs, and since the third kind, reflected cor-
relation dynamics, satisfies that requirement, it would seem
to be the optimal choice. But that is not correct. In fact, none
of the choices mentioned so far, or other possible choices of
this kind, by themselves, will lead to a stable fermion
method. The reason is easily stated: their dynamics do not
break the ‘‘plus-minus’’ symmetry. Consider, for example,
reflection dynamics applied to two pairs in whichRm

15R1 ,
Rm

25R2 andRm
15R2 , Rm

25R1 , respectively. The bisecting
hyperplane is the same in both cases; the dynamics for both
are exactly the same. The same argument holds, pair by pair,
for all of an ensemble of pairs. Thus the dynamics do not
make the necessary distinction between these pairs.

A solution is one step beyond what has been done: If we
usedynamics correlated in different waysfor the two inter-
changed pairs given above, then the symmetry is broken in a
very simple way. This, then, is the key to a stable fermion
algorithm.

How, then might such an algorithm be constructed? We
need at least two different kinds of correlated dynamics, and
we need some rules for when to apply each kind. At the
moment, we have neither experience nor theory of how to
choose the dynamics and the rules in optimal or at least
clearly intelligent ways. We proceed heuristically.
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First, entirely for simplicity, we limit consideration to just
two classes of dynamics. In order to have cancellation, re-
flected correlation dynamics is one of them. Parallel correla-
tion offers the possibility of preventing cancellation of pairs
whose configuration is favorable, so we choose it as the other
kind.

Rough criteria for the rules of application follow from
these arguments: we will use reflected dynamics for pairs not
likely to make a long term contribution to the overlap with a
particular antisymmetric test functionfAT , and parallel dy-
namics for pairs likely to make such a contribution. We will
describe our choices in more detail in the context of the test
problems given below.

IV. MODEL PROBLEMS

For simplicity and to aid in visualization of results, we
have chosen to address the Schro¨dinger equation in two di-
mensions. We must consider problems for which the ground
state is symmetric on reflection in the origin. As indicated at
the beginning of the previous section, it is technically useful
to treat problems whose ground states are known explicitly.
To create a variety of test problems, one can simply write
down the ground state wave function as

c0~r !5(
k

exp@2 1
2 ~r2r k!

2#, ~17!

where ther k are arbitrary positions in two dimensions. To
assure invariance on reflection in the origin, ther k occur in
pairs, sayr k and r2k with r2k52r k .

The potential that gives that eigenfunction and an eigen-
value of unity is

V0~r !5

(
k

~r2r k!
2 exp@2 1

2 ~r2r k!
2#

2(k exp@2 1
2 ~r2r k!

2#
. ~18!

This potential can, by various choices of the set$r k%, be
either well structured or not. A well structured potential is
characterized by the symmetries it has, in addition to the
required symmetry of invariance in reflection in the origin.

V. MODEL COMPUTER PROGRAM

An unsophisticated Monte Carlo program was written to
test whether the scheme outlined above does indeed break
the plus-minus symmetry in a stable way and does give cor-
rect distributions and eigenvalues for antisymmetric solu-
tions of the model problems described.

To avoid the complexities of managing the full range of
population fluctuation, the program uses a fixed number of
pairsM , given as input. More specifically, a pair is selected
at random from the population, and advanced one time step.
The move may, of course, result in cancellation; the process
is repeated until a new population of sizeM is developed.
This introduces a bias of order 1/M in results derived from
the calculations. As we shall see, that bias combined with
one resulting from the fixed time stepd appears to produce a
somewhat complicated source of numerical error.

The code has various options for selecting pairs ofr k , the
potential centers defined in Eq.~18!. One member of a pair

may be chosen from a Gaussian distribution with specified
variance; the other is obtained by reflecting in the origin.
Alternatively, values may simply be read in. Potentials that
are more or less well structured may be specified in this way.
A limiting case is a pair of centers at the origin, which gives
the standard two-dimensional harmonic oscillator.

The program allows three regimes in the time evolution,
each may have a different time stepd. Walkers are followed
for different numbers of time steps in each of these regimes;
data for eigenvalues and for histograms of the distributions
are accumulated only in the last. In practice,d was set large
in the first stage to allow a coarse-grained relaxation to the
equilibrium distribution; in the intermediate regime, a value
of d was used within a factor of 2 of that in the last.

The test function,fAT(x,y), was chosen to be the aniso-
tropic harmonic oscillator

fAT~x,y!5y exp@2a1
2x22a2

2y2# ~19!

rotated through an angle set to beuT . Values ofa1 , a2 , and
uT were determined by rough variational minimization; some
values ofuT were found by maximizing the integral in the
denominator of Eq.~7! with respect touT during preliminary
runs.

The program provides two alternative forms for creating
an initial population of pairs: In one,M points are sampled
from Eq. ~19! and assigned as coordinates of positive walk-
ers. Negative walkers are obtained by reflecting in thex axis;
then both members of the pair are rotated through the angle
uT . The second possible initialization requires input values
for all four coordinates of the pair. In any case, the code
generates correlated pairs of positive and negative walkers:
each member of a pair follows the drift appropriate for its
position as determined from the ground state wave function
given by Eq.~17! and the set$r k%. The Gaussians steps of the
two walkers are correlated: if the Gaussian in two dimen-
sions appropriate for one of the walkers isuW , then the other
is eitheruW ~‘‘parallel’’ or ‘‘ p-correlated’’ dynamics! or it is
the vectoruW reflected in the bisector of the line from one
walker to the other~after the drift is carried out.! for ‘‘re-
flected’’ ~or ‘‘ r -correlated’’! dynamics.

An important element of the proposed method is the cri-
terion for choosing betweenp-correlated andr -correlated

TABLE I. Eigenvalues obtained from the numerical relaxation
program for the simple harmonic oscillator.

Dx Cutoff Eigenvalue

0.200000 5.90000 1.9977403871
0.100000 5.95000 1.9994382021
0.100000 6.55000 1.9994382022
0.099160 5.90000 1.9994476213

TABLE II. Eigenvalues obtained from the Monte Carlo program
for the simple harmonic oscillator.

Pairs Steps d Eigenvalue

500 2000 2000 200000 0.100 0.040 0.040 2.011227~482!
1000 2000 2000 400000 0.100 0.040 0.020 2.005030~312!
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dynamics. As has been indicated, there is, to our knowledge,
no theory or experience for doing this. In the experimental

program, it was done as follows: Letv̂W 0 be a unit vector and
r 0 a length, both of which are specified as input. Then a pair,
$rW1,rW2% will use p-correlated dynamics if both

vŴ 0•~rW
12rW2!.0, ~20a!

~rW12rW2!2.r 0
2 ~20b!

and r -correlated dynamics otherwise.
A little experimentation showed that the overlap in the

denominator of Eq.~7! depends on the orientation ofvŴ 0 .

Generally speaking, one expectsvŴ 0 to point from the regime
in which cA , the antisymmetric solution, is negative to the
region in which it is positive. All orientations gave stability,
however. There has as yet been no attempt to study the sen-
sitivity to values ofr 0 .

A second program was written to solve the same Schro¨-
dinger equation by a simple relaxation method on a two-
dimensional mesh of spacingh. The solution was assumed to
vanish beyond a distance cutoff. Explicit antisymmetrization
of the solution was carried out after every relaxation pass
through the mesh. The eigenvalue was computed by trap-
ezoidal integration for the numerator and denominator of Eq.
~7!. Experiment showed that the error of the eigenvalue was
proportional toh2. In addition the cutoff was varied to cor-
rect for the numerical error that it introduces.

VI. RESULTS

A. Simple harmonic oscillator

Since the model program has, as a special case, the simple
harmonic oscillator, it is useful to run that case as a check on
both Monte Carlo and relaxation programs.

The results of four runs of the finite difference program
are shown in Table I. As will be seen, the mesh spacing was
varied for constant cutoff and vice versa. The effect of in-
creasing the cutoff from 5.95 to 6.55 is negligible. The error
was studied as a function ofh and found to vary ash2. On
that basis, one may extrapolate to get 2.000 004 076 for the
eigenvalue. The exact eigenvalue is 2. The fact that the ex-
trapolation reduces the error by 2 orders of magnitude serves
to increase confidence in the procedure.

Since the test functionfAT(x,y) as given by Eq.~19!
includes the exact solution fora15a25A1/2, an elementary
but useful test is to assign those values and run the program;
the result was an eigenvalue of 2~to the numerical precision
of the computer.!

More realistic Monte Carlo results are shown in Table II.
In these runs, the valuesa15a25

6
10 , chosen quite arbi-

trarily, were used. If the population bias is exactly 1/M , and
the time step error is proportional tod, and the two are in-
dependent, then both can be extrapolated from the two sets
of results in the tables. The result is an eigenvalue of
1.998 83~79!, that is, 1.48 standard deviations from the exact
result.

In fact, the simple harmonic oscillator is not a serious test
of the general methods proposed here. The reason is that the
plus-minus symmetry is broken by either one of the dynam-
ics used. The combinations proposed in this paper are not
necessary. It is interesting to examine the way in which this
works. We start with an ensemble of pairs with a vertical
orientation, and with the positive walker above the negative.

As indicated above, the dynamics is controlled by the
importance function, which in this case is simply

cT~R!5f0~rW !5exp~2r 2/2!.

A drift step then moves fromrW to rW(12d). A sequence of
drift steps drives a walker toward the origin. For ordinary
diffusion dynamics, this is compensated by the diffusion
steps that distribute the walkers in a Gaussian centered about
the origin.

For a correlated pair of plus-minus walkers, the drift steps
act in the same way: A sequence of drift steps drives the
center of mass and the relative separation of the pair towards
zero. However, the orientation of the pair—the direction
from the negative walker to the positive walkers—is un-
changed in such steps.

The effect of parallel-correlated diffusion is as follows:
The pair orientation is unaffected, the center of mass is
changed by the addition of a Gaussian, and the relative dis-
tance is unchanged. An alternation of drift steps and
p-correlated steps leaves the direction unchanged, distributes
the center of mass in a Gaussian, and drives the relative
distance to zero.

Steps that use reflection-correlated diffusion with cancel-
lation also preserve the pair orientation. If a pair survives,
then the new pair has the same vertical coordinate of the
center of mass as the old, but the relative separation changes
by a Gaussian. Thus the alternation of drift steps and
r -correlated steps leaves the direction unchanged, drives the
vertical coordinate of the center of mass to zero, and distrib-
utes the relative separation in a Gaussian. Note thatr corre-
lation without cancellation can invert the direction of the pair
of walkers.

TABLE III. Potential centers for problem A.

0.00000 3.00000 0.0000023.00000 1.73202 1.00000
21.73202 21.00000 0.8660320.50000 20.86603 0.50000

TABLE IV. Monte Carlo results for problem A.

Pairs Steps d Eigenvalue

1000 4000 4000 80000 0.100 0.040 0.040 1.154122~410!
2000 4000 4000 80000 0.100 0.040 0.040 1.153422~225!
1000 4000 8000 160000 0.100 0.040 0.020 1.152503~727!
2000 4000 8000 80000 0.100 0.020 0.010 1.152575~1052!
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The outcome of a sequence of drift and correlated steps is
that the orientation is preserved. In itself, this breaks the
plus-minus symmetry. For example, if the initial population
has~as would be natural! a net ‘‘polarization’’ in the sense
that the average direction from negative to positive walkers
is positive, then that will be preserved. If all initial pairs have
the same direction, then that will be conserved. Thus, asymp-
totically the overlap with a test function will not be equally
likely to have positive and negative values.

In fact, if the correlated steps referred to in the last para-
graph are always parallel, then the overlap from a pair of
walkers will be asymptotically zero, since the separation of
the two will go to zero geometrically. However, it is possible
to show—we will not carry this out here—that an estimator
for the eigenvalue can be obtained from these pairs by in-
cluding the weight that comes from the factor
exp[(EF2E0)t].

On the other hand the dynamics that results from using
drift and reflection correlation~with cancellation! applied to
an ensemble of pairs correctly solves the simple harmonic
oscillator problem and gives asymptotically stable estimates
for the integrals needed to determine the eigenvalue.

Finally, we note that if the plus and minus walkers of a
pair are initiated as images in a single line, then that relation-
ship is preserved in parallel moves. The outcome of an in-
definite sequence of parallel moves is that each member of

the pair undergoes a random walk that obeys the fixed-node
constraint.

The notion introduced in LZK and extended here of using
distinct classes of correlated dynamics is therefore not
needed for the harmonic oscillator. The problems discussed
in the next sections were devised with the expectation that
the more or less ill structured potentials would yield drift
behavior that would in turn require the use of different dy-
namics.

B. Unstructured problems in two dimensions

In the paper of LZK, a construction was given in which a
correlated walk could be extended to Schro¨dinger equations
with potentials provided that special~unphysical! inequali-
ties in the potential were satisfied. Although there is no clear
and direct connection between that construction and the al-
gorithm used here, we wanted to avoid satisfying the them.
Stefan Koch devised a set of potential centers, shown in
Table III that are sufficiently unstructured not to obey the
inequalities.

The program that solves the Schro¨dinger equation by fi-
nite differences and relaxation gives 1.1467 for the eigen-
value of this problem. A summary of the Monte Carlo results
is given in Table IV. The extrapolation to correct for time
step and population size biases gives 1.1495 with a standard
deviation of 0.0020. The discrepancy between relaxation and
Monte Carlo results corresponds to 1.42 standard deviations.

In the Monte Carlo runs, histograms were recorded of the
density of positive and negative walkers. The difference of
those densities is proportional to the integral of the product
of fAT(rW)cA(rW) over the two-dimensional bins. By carrying
out the same integrations over the same bins using the nu-

FIG. 1. Centers,r k , for the two-dimensional wave function specified in Eq.~17! for the problem described in Table VII.

TABLE V. Potential centers for problem B.

0.00000 0.90000 0.0000020.90000 0.51960 0.30000
20.51960 20.30000 0.2598120.15000 20.25981 0.15000

53 5425CORRELATED PAIRS IN MODEL FERMION MONTE CARLO . . .



merical solution, one can obtain distributions that can be
compared directly with the Monte Carlo method. The nor-
malizations are arbitrary so what is required is that ratios of
histograms be constant, even when the nodal line is crossed
and the signs of both histograms change together. That con-
dition is well satisfied for this calculation and for all the
others. The ratios are constant within a few percent except at
the edges where the distributions become small.

In the usual analysis of the decay of the signal to noise in
the Monte Carlo treatment of fermion problems, the ratio of
the eigenvalues for antisymmetric to symmetric solutions
plays a key role. Large ratios make the problem worse. In the
problem previously discussed, the ratio turned out to be 1.15.
In an attempt to find a calculation that is more challenging in
that respect, we created another by simply scaling down the
positions of the potential centers in Table III by a factor of
0.3 to get the coordinates in Table V. The eigenvalue ob-
tained by numerical relaxation is 1.747 53, so that the aim of
increasing the eigenvalue towards a value of 2.00 has been
achieved. There was no indication of any unstable tendency
in the Monte Carlo calculations, so it is not at all clear that
shrinking the scale of the potential in this way has posed any
additional difficulties. An effect of the rescaling of the po-
tential is to make it smoother, that is to say more like a
harmonic oscillator, so that variational estimates based on an
anisotropic Gaussian are rather accurate. In that sense, this
rescaled potential is not a good test of the generality of the
new method.

Table VI gives the results of the Monte Carlo calculations
for this problem. In designing this set of calculations, it was
assumed that the time step error is proportional tod and the
population bias proportional to 1/M , and that the two are
independent of each other. Thus a run withd50.04 and

N5500 can be combined with another havingd50.02 and
N51000 by linear extrapolation. The result of this procedure
is an eigenvalue of 1.747 10 with a standard deviation of
0.000 13. The agreement, which appears good, is in fact 3.3
standard deviations. We believe that the explanation lies in
the time step and the population errors and in the extrapola-
tion, but have not chosen to pursue the exact elucidation of
the errors and their possible interdependence. We believe
that the results do demonstrate the correct solution of the
model problem.

In attempt to create one more test calculation that would
induce the appearance of instability, Koch invented the set of
potential centers shown in Table VII. These extend the range
to large distances. The positions of the centers are also
shown in Fig. 1. The centers are located on two spirals in-
tended to permit positive and negative walkers to drift along
different spirals and interchange positions.

In any case, no evidence of an instability in the Monte
Carlo calculations was seen in any of many long runs with
different program-related parameters. The large extent of the
potential poses difficulties for both numerical relaxation and
Monte Carlo: the convergence is slow and more computer
time was consumed in assuring reasonable convergence. The
eigenvalue obtained from numerical relaxation was
1.018 497. Monte Carlo results are shown in Table VIII.
Making the same assumptions as before that the population
corrections and time step corrections are independent and
linear, we extrapolate to an eigenvalue of 1.016 748~1124!.
The discrepancy corresponds to 1.56 standard errors of the
Monte Carlo result.

VII. CONCLUSIONS

Although the problems actually solved in this study are
only two dimensional, we believe that their correct solution

TABLE VI. Monte Carlo results for problem B.

Pairs Steps d Eigenvalue

500 2000 2000 200 000 0.100 0.040 0.040 1.747695~068!
1000 2000 2000 500 000 0.100 0.040 0.020 1.747398~054!

TABLE VII. Potential centers for problem C.

8.00000 0.00000 28.00000 0.00000 7.74250 21.46900
27.74250 1.46900 7.21210 22.86260 27.21210 2.86260
6.42430 24.12820 26.42430 4.12820 5.40510 25.21580

25.40510 5.21580 4.19090 26.07970 24.19090 6.07970
2.82770 26.68110 22.82770 6.68110 1.37060 26.99020

21.37060 6.99020 20.11850 26.98820 0.11850 6.98820
21.57270 26.66970 1.57270 6.66970 22.92280 26.04350
2.92280 6.04350 24.10060 25.13450 4.10060 5.13450

25.04210 23.98330 5.04210 3.98330 25.69200 22.64620
5.69200 2.64620 26.00740 21.19410 6.00740 1.19410

25.96190 0.29050 5.96190 20.29050 25.54960 1.71660
5.54960 21.71660 24.78780 2.98980 4.78780 22.98980

23.71960 4.01810 3.71960 24.01810 22.41450 4.71930
2.41450 24.71930 20.96680 5.02880 0.96680 25.02880
0.50730 4.90830 20.50730 24.90830 1.87660 4.35370

21.87660 24.35370 3.00470 3.40270 23.00470 23.40270
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means that the principle introduced in this paper, namely,
pair dynamics with correct marginal dynamics for each
member of a pair and with correlations that vary with the
location of the pair does indeed break the plus-minus sym-
metry and offers the possibility of accurate and stable ferm-
ion Monte Carlo calculations in continuum systems.

Clearly much work remains before it can be said that a
practical method has been demonstrated that works effi-
ciently on a variety of systems and for large numbers of
particles. The method needs to be demonstrated on model
and realistic few- and many-body systems in three dimen-
sions.

Many technical issues remain to be explored: When the
importance functions used to bias the trajectories are not
eigenfunctions, then pairs will occasionally break or new un-
paired walkers will be created. This is not thought to be a
major difficulty, but a means for re-pairing walkers needs to
be developed. It is useful to use larger ensembles of corre-
lated walkers than pairs? In more than two dimensions, many
more classes of correlations can be invoked. We can only
guess whether their use will improve the efficiency and scal-
ability of the method. The ideas used here for choosing be-
tween different classes of correlations are primitive. Both
experience and theory will be needed.

Our experience so far suggests strongly that a ‘‘second
stage importance function’’ for pairs can be defined that is
distinct from the original importance function. This new
function would be used, for example, to bias the dynamics of
pairs to prevent their annihilation. In general, its use should
improve the efficiency and scalability to large systems of the
method. At the moment, only very preliminary ideas exist
about the nature of such a new pair importance function.

It would be useful to find a way to incorporate this basic
idea into a Green’s-function Monte Carlo approached so as
to have a fermion algorithm with no time-step error. The new
methodology should prove applicable to Monte Carlo meth-
ods for systems at finite temperature such as path integral
methods.

Finally, we conjecture that the idea of variable correlation
for pairs of systems will be applicable to other quantum
Monte Carlo methods. The challenge posed by treating fer-
mions can be viewed as the need to break an algorithmic
symmetry between signed entities, and it may be possible to
treat other calculations in this class in the same way.
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TABLE VIII. Monte Carlo results for problem C.

Pairs Steps d Eigenvalue

2000 20000 5000 50000 0.500 0.200 0.100 1.023668~519!
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