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Correlated pairs in model fermion Monte Carlo calculations
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The issues that prevent the development of efficient and stable algorithms for fermion Monte Carlo calcu-
lations in continuum systems are reexamined with special reference to the implications of the “plus-minus”
symmetry. This is a property of many algorithms that use signed walkers, namely, that the dynamics are
unchanged when the signs of the walkers are interchanged. Algorithms that obey this symmetry cannot exhibit
the necessary stability. Specifically, estimates of the overlap with any antisymmetric test function cannot be
bounded away from zero in the limit of many iterations. Within the framework of a diffusion Monte Carlo
treatment of the Schdinger equation, it is shown that this symmetry is easily broken for pairs of walkers
while at the same time preserving the correct marginal dynamics for each member of the pair. The key is to
create different classes of correlations between members of pairs and (&t lesss} two distinct correlations
for a pair and for the same pair with signs exchanged. The ideas are applied successfully for a class of simple
model problems in two dimensions.

PACS numbgs): 02.70—c, 05.30-d, 03.65.Ge

I. INTRODUCTION where {R,,} is the set of positions attained by a random
walker, possibly after some initial equilibration. The dynam-
This paper continues a discussion of possible Monte Carlécs must be such that
algorithms intended to solve the nonrelativistic Sclimger
equation for fermions in continuous space. In particular, it lim x™(R)=y(R), (4)
succeeds the paper of Liu, Zhang, and Kdlbs(LZK); see n—o

also references therein. where ¢/(R) is a solution of the Schdinger equation
We take the opportunity here to sketch the basic issues in . 9 qu y
In general, we will use some test functiop(R) to

a very general way. Wave functions are represented by en-

sembles of points in the configuration space required for thggﬂgcgft?ﬁews""éﬁ%iEOZ':'Znig’t?oﬁs ;%f?et?r':ig:igges”?;fo'u'
physics of the problem. Each such point usually contains 9 9 ' Y

Cartesian coordinates for all of the interacting particles.mUSt be an a_ppropnately antisymmetric functidg(R). To

) ) . . solve a fermion problem within this framework, the dynam-
Since those coordinates change following stochastic dynaml(—:s must be such that
ics appropriate for the mathematical problem, it is reasonable
to think of them as random walkers in configuration space.
For an N-body system in three dimensions lim f Y™(R)par(R)d R=Cf UaA(R)par(R)AR, (5)
R={X1,Y1,21,X2,...,.¥n Zn}.- More generally, we may deal n—o
with ensembles of such walke®={R;,R,,...,R«}. In ei- ) . ) ) .
ther case, we will introduce stochastic dynamics that produc¥nere ¥a(R) is an antisymmetric solution of the Schro
random walks foR or for R. On the average, the density of dinger equation an@ is a nonzero constant independent of

walkers y("(R) at then-th stage of such a walk faR sat- @At

isfies Multiplying the Schradinger equation,
Hya(R)=Ea¢a(R), (6)
(n) - "+ (n—1)p’ '
XT(R) )\f 9(R.RO)Y™ T(R)AR @D by #a1(R), integrating over all coordinates, and using the

hermiticity of H, one obtains

_JYA(RHGar(R)AR _lim,_../x'(R)H par(R)AR
A7 TYaA(R) ¢ar(RIAR — limy_..[ x™(R) par(R)dR

or the global density of the entire population satisfies

x<”>(R)=Af G(R,RHXMY(R")dR’. 2
2 Har(Rm)
As with all Monte Carlo calculations, a solution of the . @)
equations is represented as a sunddfinctions: > dar(Rp)
m

_ _ Collective dynamics, if used, must produce distributions
Y(R)=2 8(R=R), 3) X(M(R) of ensemble positions such that
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mains of the scaling to large systems. These forms of collec-
lim f f XM(R) par(R))dRy - -dRy tive dynamics involve large ensembles of interacting walk-
n—e ers, and although the scaling has not been studied
experimentally, it is plausible that as the system size grows,
:C’J Ya(R)dpr(R)AR the size of the interacting ensemble will have to be made
larger. Since the complexity of the method appears to grow
with the square of the ensemble size, it is not obviously
promising.
: - : LZK exhibited an exact method using at most pairs of
It is by now well known that the ordinary dynamics used walkers for the Monte Carlo integration of the Sotiirer

in Green’'s-function or diffusion Monte Carlo calculations . . ; ) o i
have symmetric functions as their asymptotic distributions€duation so as to yield solutions antisymmetric in the origin.
lthough the method applied to highly artificial model

Thus the integrals in both numerator and denominator of Ed. ; : . . .
(7) have zero as their limits. We will not review here all of roblems—p_artlcles In various en_clo_sures with ho pot(_ept_lals,
the various methods that have been invoked to overcome thf¥ elsl_e_ W't.h. potentlals_ sat|sfy||ng ce-hrtaln a_r|t||f|C|aI
essential difficulty. Instead, we concentrate on the generzipeq,u""'t'es_'t IS a provocative result, one that we will sum-
ideas following Arowet al.[2], Zhang and Kalo§4] (ZK) marize here. Direct reference to the paper would be very
’ " helpful.

and LZK. . . .

We consider some form of collective dynamics involving Consider a two-dimensional enclosusuch as a paral-

random walkers, equal numbers of which carry positive ande!0gram in which a solution to the Schdinger equation

negative signs. The dynamics are “collective” in the Sensethat is antisymmetric on reflection in the origin is required.

that all or many members of the ensemble determine thQiViqe th'e enclosure into four subr.egions by two orthogonal
future stochastic behavior of any member. The differensStraight lines. Walkers are started in one of these four subre-
signs help to represent the antisymmetric.wave functiorgions(either one that contains both of the reflections of two
(which is not everywhere positiyand also offer the possi- of the other subregions in the line§Valkers that cross either
bility that cancellation can occur between walkers of differ-

of the two lines for the first time are turned into two of
ent signs, and that the resulting population will be such thaPPPOSite sigrieach with a weight of one-halvhere the new
the integrals that appear in EGZ) will be asymptotically

point is the reflection in the origin of the original. The paths
different from zero. We call dynamics that produce such LOf the two walkers are thereaf_ter constrained to be reflections
result “asymptotically stable.” If one is willing to let the ©" the line f'r_St fouched. T_he first passage across the orthogo-
population of walkers grow exponentially, with a sufficiently nal line—which oceurs with probability one—is guargnteed
large coefficient, then asymptotic stability is easy to attain [ ,be at the same point. Two walkers of opposite sign that
The penalty is that the variance decreases only as the inver@/ive at the same point cancel each other and can be

of the logarithm of the computing time rather than as itsdroPPed from consideration. . .
inverse. The essential features of LZK, which seem important to

In several papers, ZK introduced the notion of the “plus- retain, are the following. The dynamics couples a positive

minus” symmetry, a way of considering whether some prO_and a negative walkgr using two distinct correlatlor)s in such
a way that the marginal dynamics for each walker is correct.

posed collective dynamics might be asymptotically stable’ llation b | d mi K . iol
The criterion is simple: suppose that at a certain stage of gancellation between plus and minus walkers Is possible.
he outcome is that the symmetry is broken by a geometric

collective dynamics, the configuratidR consists of equal ;
numbers of positive walkerdR, } and of negative walkers construction, not dependent on unknown features of the so-
dHtion, such as the nodal surface.

R }. Suppose also that one interchanges the two subpo L . .
{Ric} PP g Pop The generalization of LZK to problems with arbitrary po-

lations LS . . : . .
tentials in many dimensions is not at all obvious. This paper
R/ —R;: Ri—R/ ®) is d_evoted to one possible extension. Slnc_:e the motivation is
easiest to give, and the applications carried out lie within a

for everyk. If the dynamics cannot distinguish between theSimple diﬁ_‘usion . Cg_rlo framework, we first devote a
short section to an exposition of the algorithmic character of

original collective configuration and the interchanged con->_ "~ e
figgration, then both wiglyl be represented equally ig the as-the |mp9rt'ance-samp'led diffusion Monte Carlo method for
ymptotic population. In that case, the integrals inEZgwill the Schrainger equation.

again be zero. Therefore, a necessary condition for stability
is that the dynamics breaks the plus-minus symmetry.

The collective dynamics of the kind introduced by Arnow  Following the general structure of the Green’s-function
et al. [2] clearly do not break this symmetry. Although ZK Monte Carlo approach, Ceperley and co-worKéisshowed
believed that their introduction of a collective importancethat with the use of a finite time step, the Schrdinger
sampling had that effect, it is not so: importance samplingequation in imaginary time, modified by an importance sam-
cannot break the symmetry when the original dynamics haveling transformation, can be integrated by a particularly
not done so. This applies also to the versions of the dynamicsimple Monte Carlo procedure. We do not propose to repeat
of Arnow et al. that have been used by Anderson and histhe derivation here nor any extensive discussion; they are
co-workerd 3]. Although these forms of collective dynamics well known. Rather, we need simply to recall its essence.
are very likely to slow down the decay to the symmetric  Consider a Hamiltoniatd = — 2V?+ V(R). Ceperley de-
distribution, they cannot entirely stop it. Also, the issue re-rives the evolution of the Schdinger equation in imaginary

for everyj. That is, the marginal distribution for eveR;
must project toy, in this way.

II. DIFFUSION DYNAMICS
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time 7 from the operation of expt 7(H—E{)] upon some To assure correct marginal dynamics, we simply apply to
initial function ¢(R,0): each of the walkersR ., ,Ry,) the three steps outlined in the
previous section.
P(R,7)=exf — 7(H—E)]¥(R,0). ©) One simple class of correlations between the two walkers

E; is a number that approximates to the lowest eigenvaluer(alates the Gaussian vectorg{,U") that are used in the

g b o .
Let ¢1(R) be some trial function that approximates to thed'ffus'(g steps fg_r th ’tRm)'. rfs%ectlvely.l Izot(ta that tZ?ﬁ
ground state solutionj,(R), and same Gaussian distribution is to be sampled at every diffu-

sion step. Thus we can correlate té with U~ in many
f(R,7)= d1(R) (R, 7)exp(E17). (100  ways that are technically easy to achieve. For example, put-
ting UT=U" or U"=—U" achieves a potentially useful
Then a random walk, which consists of three steps in turnkind of correlation between the positive and the negative
will generate a population of walkers whose density iswalkers, while trivially preserving the correct marginal dy-

f(R, 7). If the method is iterated long enough, namics. We call these “parallel” correlation dynamics and
“antiparallel” correlation dynamics, respectively.
(R, 7) = ¢1(R) o(R)EXH (Ex—E) 7] (11 Within that basic class of correlations, there are clearly

. : D
from which estimates of the eigenvalue and other informar oy Ways of relating the Gaussian vectogs (U ). We

tion that relates to the solutiofig(R) may be derived introduce one more as of particular interest. Suppose that the
The three steps that take g walker at positlm.and positions of the two walkers just after each has been moved

imaginary timer into a positionR,,. at time r+8 are as DY & "drift” step are Ry, andRy,", respectively. Construct
follows.: the hyperplane that is the perpendicular bisector of the line
from R/ to R/ . Now let U~ be the reflection oJ* in

that hyperplane. What is special about this relation of the
. vectors is that the relative distan(®,,—R | of successive

oV ¢1(Rn)! d(Rpy). (120 positions is a one-dimensional variable that undergoes a ran-

e : ) i dom walk, which, with probability one, brings the pair even-
(2) Diffusion: a displacement by the 3N)-dimensional iy to positions wher® ;=R ,. In other words, this “re-

random vectory/6U, where each component df is a flected” correlation dynamics guarantees eventual
Gaussian random variable with mean zero and variance oneancellation of the pairR,, ,R,). This cancellation will be

The outcome of stepgl) and (2) is that the walker is efficient even in many dimensions. It can be accelerated by

(1) Drift: a displacement by the many-dimensional vector

moved to sampling pairs R ,R.,) from the kernel constructed from
. _ the difference of the Green’s functions centered®gt and
Rt 1= R+ 8V dr(Rm)/ r(Rpn) +/8U. (13)  R!", respectively, enforcing the reflection symmetry in the

. e , new values oR, andR .
(3) Branching: After the diffusion step, each walker is re-  \ye may now ask which of the three kinds of correlation

placed by a ranc_iom number of identical walkers, the averaggynamics is most promising for a fermion algorithm based
number now being on diffusion dynamics. Since we have stressed the need for
cancellation of pairs, and since the third kind, reflected cor-
exp{ — o[ H ¢1(Ry+ 1)/ d1(Rm+1) —Exl} 14 elation dynamics, satisfies that requirement, it would seem
In particular, if ¢-(R) were an eigenfunction and to be the optimal choice. But that is not correct. In fact, none
T of the choices mentioned so far, or other possible choices of
_ this kind, by themselves, will lead to a stable fermion
Hor(R) ¢r(R)=Er, @39 method. The reason is easily stated: their dynamics do not
then there would be no branching at all: a walker lives for-Préak the “plus-minus” symmetry. Consider, for example,
ever. reflection dynamics applied to two pairs in whigh,=R,,
Rm=R, andR, =R,, R,=R;, respectively. The bisecting
hyperplane is the same in both cases; the dynamics for both
are exactly the same. The same argument holds, pair by pair,
We are now in a position to consider how to introducefor all of an ensemble of pairs. Thus the dynamics do not
correlated walks of pairs of walkers that carry opposite signsmake the necessary distinction between these pairs.
guided by the principles derived from LZK. A solution is one step beyond what has been done: If we
If the Monte Carlo algorithm is indeed to involve pairs usedynamics correlated in different waysr the two inter-
(R4 ,Ry) that live forever or for a long time, then there changed pairs given above, then the symmetry is broken in a
should be little branching of the two independent of eachvery simple way. This, then, is the key to a stable fermion
other. One way to assure this is to use the symmetric grounalgorithm.
state as an importance function. We shall assume that it is How, then might such an algorithm be constructed? We
known. In fact we will construct model problems starting need at least two different kinds of correlated dynamics, and
from an assumed ground statg(R). Furthermore we will we need some rules for when to apply each kind. At the
set moment, we have neither experience nor theory of how to
choose the dynamics and the rules in optimal or at least
Er=Huo(R)/ ¢o(R). (16 clearly intelligent ways. We proceed heuristically.

IIl. CORRELATED PAIRS OF PLUS-MINUS WALKERS
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First, entirely for simplicity, we limit consideration to just TABLE |. Eigenvalues obtained from the numerical relaxation

two classes of dynamics. In order to have cancellation, reprogram for the simple harmonic oscillator.

flected correlation dynamics is one of them. Parallel correla:

tion offers the possibility of preventing cancellation of pairs AX Cutoff Eigenvalue

\Q{hgse configuration is favorable, so we choose it as the oth%{ 200000 5.90000 1.9977403871

"Rough criteria for the rules of application follow from %-1000%0 >-95000 1.9994382021
ough critena 1o wes of application Toflow 1rom o 4 4q009 6.55000 19994382022

these arguments: we will use reflected dynamics for pairs ng
likely to make a long term contribution to the overlap with a
particular antisymmetric test functiop,, and parallel dy-

namics for pairs likely to make such a contribution. We will 5y he chosen from a Gaussian distribution with specified
describe our choices in more detail in the context of the tes{g iance: the other is obtained by reflecting in the origin.
problems given below. Alternatively, values may simply be read in. Potentials that
are more or less well structured may be specified in this way.

IV. MODEL PROBLEMS A limiting case is a pair of centers at the origin, which gives

For simplicity and to aid in visualization of results, we the Standard two-dimensional harmonic oscillator. _
have chosen to address the Sctinger equation in two di- The program allows three regimes in the time evolution,

mensions. We must consider problems for which the groun§ach may have a different time stépWalkers are followed
state is symmetric on reflection in the origin. As indicated at©" different numbers of time steps in each of these regimes;

the beginning of the previous section, it is technically usefuldat@ for eigenvalues and for histograms of the distributions
to treat problems whose ground states are known explicitly2'€ @ccumulated only in the last. In practidayas set large

To create a variety of test problems, one can simply writd" the first stage to allow a coarse-grained relaxation to the
down the ground state wave function as equilibrium distribution; in the intermediate regime, a value

of § was used within a factor of 2 of that in the last.
The test functiong,r(X,y), was chosen to be the aniso-

.099160 5.90000 1.9994476213

o(r)= zk: exf —3(r—ry)?l, (17 tropic harmonic oscillator
where ther, are arbitrary positions in two dimensions. To pat(x,y) =Yy exq —aix’—ady’] (19
assure invariance on reflection in the origin, theoccur in
pairs, sayr, andr _, with r_.=—r,. rotated through_an angle set to B_e._VaIues_o_fal_, ay, and
The potential that gives that eigenfunction and an eigenft Were determined by rough variational minimization; some
value of unity is values _ofeT were foun(_j by maximizing th_e mteg_ral_ in the
denominator of Eq(7) with respect tad; during preliminary
) ) ) runs.
% (r=ro® exg —z(r—ry°] The program provides two alternative forms for creating
Vo(r)= ) (18) an initial population of pairs: In onéyl points are sampled
23 exy = 3(r—ry)?] from Eq.(19) and assigned as coordinates of positive walk-

) ) ) i ers. Negative walkers are obtained by reflecting inxlais;
This potential can, by various choices of the $8f}, be  hen hoth members of the pair are rotated through the angle
either well structured or not. A well structured potential is g The second possible initialization requires input values
characterized by the symmetries it has, in addition to thgqr 4| four coordinates of the pair. In any case, the code
required symmetry of invariance in reflection in the origin. generates correlated pairs of positive and negative walkers:
each member of a pair follows the drift appropriate for its
V. MODEL COMPUTER PROGRAM position as determined from the ground state wave function
An unsophisticated Monte Carlo program was written to91ven by Eq(17) and the sefr,}. The Gaussians steps of the
test whether the scheme outlined above does indeed bre&C Walkers are correlated: if the Gaussian in two dimen-
the plus-minus symmetry in a stable way and does give cor$iONS appropriate for one of the walkerstisthen the other
rect distributions and eigenvalues for antisymmetric soludS eitherud (“parallel” or * p-correlated” dynamicsor it is
tions of the model problems described. the vectori reflected in the blgeqtor of 'the line from one
To avoid the complexities of managing the full range ofwalker to the otherafter the drlft_ is carried out.for “re-
population fluctuation, the program uses a fixed number oflécted” (or “r-correlated’) dynamics. _ _
pairsM, given as input. More specifically, a pair is selected An important element of the proposed method is the cri-
at random from the population, and advanced one time stef€fion for choosing betweep-correlated and -correlated
The move may, of course, result in cancellation; the process
is repeated until a new population of siké is developed.
This introduces a bias of orderM/in results derived from
the calculations. As we shall see, that bias combined meairs
one resulting from the fixed time stefappears to produce a
somewhat complicated source of numerical error. 500 2000 2000 200000 0.100 0.040 0.040 2.0112832

The code has various options for selecting pairs,ofthe 1000 2000 2000 400000 0.100 0.040 0.020 2.005(RBIP)
potential centers defined in EGL8). One member of a pair

TABLE Il. Eigenvalues obtained from the Monte Carlo program
for the simple harmonic oscillator.

Steps 1) Eigenvalue
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TABLE lIl. Potential centers for problem A. Since the test functionpar(X,y) as given by Eq.(19)
includes the exact solution far, =a,=\/1/2, an elementary
0.00000  3.00000 0.00000-3.00000 1.73202 1.00000 put useful test is to assign those values and run the program;

—1.73202 —1.00000 0.86603 —0.50000 —0.86603 0.50000  the result was an eigenvalue oft® the numerical precision

of the computey.

More realistic Monte Carlo results are shown in Table II.

dynamics. As has been indicated, there is, to our knowledgén these runs, the valuea,=a,=+;, chosen quite arbi-

no theory or experience for doing this. In the experimentatrarily, were used. If the population bias is exactlyl/and
program, it was done as follows: Lé‘o be a unit vector and the time step error is proportional # and the two are in-

ro & length, both of which are specified as input. Then a pairg]?ﬁigﬁletgt'i;h?;‘eb?églg:n _?ﬁeeﬁgz&? I‘"]i‘;eda;mé?gg;]e\/;m% soefts
{F*,r~} will use p-correlated dynamics if both |

1.998 8379), that is, 1.48 standard deviations from the exact

. result.
oo (FT—F7)>0, (20a In fact, the simple harmonic oscillator is not a serious test
of the general methods proposed here. The reason is that the
(Fr—F)2>r2 (200  Plus-minus symmetry is broken by either one of the dynam-

ics used. The combinations proposed in this paper are not
necessary. It is interesting to examine the way in which this
works. We start with an ensemble of pairs with a vertical
) ) . orientation, and with the positive walker above the negative.
denominator of Eq(7) depends on the orientation afo. As indicated above, the dynamics is controlled by the
Generally speaking, one expedig to point from the regime importance function, which in this case is simply
in which ¢, , the antisymmetric solution, is negative to the
region in which it is positive. All orientations gave stability, 1 (R) = ¢ho(F) = exp( —r7/2).
however. There has as yet been no attempt to study the s
sitivity to values ofr .

A second program was written to solve the same Schro

andr-correlated dynamics otherwise.
A little experimentation showed that the overlap in the

ER" drift step then moves fronii to F(1—5). A sequence of
drift steps drives a walker toward the origin. For ordinary
diffusion dynamics, this is compensated by the diffusion

d!nger _equat|0n by a S|m_ple relaxatlo_n method on a tWO'steps that distribute the walkers in a Gaussian centered about
dimensional mesh of spacitig The solution was assumed to the origin

vanish beyond a distance cutoff. Explicit antisymmetrization For a correlated pair of plus-minus walkers, the drift steps

of the solution was carried out after every relaxation PaSS, .t in the same way: A sequence of drift steps drives the
through the mesh. The eigenvalue was computed by trapé '

o . ) enter of mass and the relative separation of the pair towards
ezoidal integration for the numerator and denominator of Eq., ...~ owever. the orientation of the pair—the direction
(7). Experlment showed _that the error of the elg_envalue Watom the negat,ive walker to the positive walkers—is un-
proportional toh?. In addition the cutoff was varied to cor-

rect for the numerical error that it introduces changed in such steps.
' The effect of parallel-correlated diffusion is as follows:

The pair orientation is unaffected, the center of mass is

VI. RESULTS changed by the addition of a Gaussian, and the relative dis-
tance is unchanged. An alternation of drift steps and
p-correlated steps leaves the direction unchanged, distributes

Since the model program has, as a special case, the simplee center of mass in a Gaussian, and drives the relative
harmonic oscillator, it is useful to run that case as a check odistance to zero.
both Monte Carlo and relaxation programs. Steps that use reflection-correlated diffusion with cancel-

The results of four runs of the finite difference programlation also preserve the pair orientation. If a pair survives,
are shown in Table I. As will be seen, the mesh spacing waghen the new pair has the same vertical coordinate of the
varied for constant cutoff and vice versa. The effect of in-center of mass as the old, but the relative separation changes
creasing the cutoff from 5.95 to 6.55 is negligible. The errorby a Gaussian. Thus the alternation of drift steps and
was studied as a function &f and found to vary ak?. On  r-correlated steps leaves the direction unchanged, drives the
that basis, one may extrapolate to get 2.000 004 076 for theertical coordinate of the center of mass to zero, and distrib-
eigenvalue. The exact eigenvalue is 2. The fact that the exites the relative separation in a Gaussian. Notertleatrre-
trapolation reduces the error by 2 orders of magnitude servdation without cancellation can invert the direction of the pair
to increase confidence in the procedure. of walkers.

A. Simple harmonic oscillator

TABLE IV. Monte Carlo results for problem A.

Pairs Steps ) Eigenvalue

1000 4000 4000 80000 0.100 0.040 0.040 1.1541£10)
2000 4000 4000 80000 0.100 0.040 0.040 1.1534225)
1000 4000 8000 160000 0.100 0.040 0.020 1.152608))

2000 4000 8000 80000 0.100 0.020 0.010 1.15281M862
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TABLE V. Potential centers for problem B. the pair undergoes a random walk that obeys the fixed-node
constraint.

0.00000  0.90000 0.00000-0.90000  0.51960 0.30000 The notion introduced in LZK and extended here of using
—0.51960 —0.30000 0.25981 —0.15000 —0.25981 0.15000 distinct classes of correlated dynamics is therefore not
needed for the harmonic oscillator. The problems discussed
in the next sections were devised with the expectation that

The outcome of a sequence of drift and correlated steps ihe more or less ill structured potentials would yield drift
that the orientation is preserved. In itself, this breaks théehavior that would in turn require the use of different dy-
plus-minus symmetry. For example, if the initial population hamics.
has(as would be naturala net “polarization” in the sense
that the average direction from negative to positive walkers
is positive, then that will be preserved. If all initial pairs have  In the paper of LZK, a construction was given in which a
the same direction, then that will be conserved. Thus, asympeorrelated walk could be extended to Sairger equations
totically the overlap with a test function will not be equally with potentials provided that speci@linphysical inequali-
likely to have positive and negative values. ties in the potential were satisfied. Although there is no clear

In fact, if the correlated steps referred to in the last paraand direct connection between that construction and the al-
graph are always parallel, then the overlap from a pair ofjorithm used here, we wanted to avoid satisfying the them.
walkers will be asymptotically zero, since the separation ofStefan Koch devised a set of potential centers, shown in
the two will go to zero geometrically. However, it is possible Table Il that are sufficiently unstructured not to obey the
to show—we will not carry this out here—that an estimatorinequalities.
for the eigenvalue can be obtained from these pairs by in- The program that solves the SctHiager equation by fi-
cluding the weight that comes from the factor nite differences and relaxation gives 1.1467 for the eigen-
exp[(Eg—Ep) 7]. value of this problem. A summary of the Monte Carlo results

On the other hand the dynamics that results from usings given in Table IV. The extrapolation to correct for time
drift and reflection correlatiofwith cancellation applied to  step and population size biases gives 1.1495 with a standard
an ensemble of pairs correctly solves the simple harmonideviation of 0.0020. The discrepancy between relaxation and
oscillator problem and gives asymptotically stable estimate®onte Carlo results corresponds to 1.42 standard deviations.
for the integrals needed to determine the eigenvalue. In the Monte Carlo runs, histograms were recorded of the

Finally, we note that if the plus and minus walkers of adensity of positive and negative walkers. The difference of
pair are initiated as images in a single line, then that relationthose densities is proportional to the integral of the product
ship is preserved in parallel moves. The outcome of an inef ¢,(F) ¥A(F) over the two-dimensional bins. By carrying
definite sequence of parallel moves is that each member afut the same integrations over the same bins using the nu-

B. Unstructured problems in two dimensions

FIG. 1. Centersr,, for the two-dimensional wave function specified in Etj7) for the problem described in Table VII.
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TABLE VI. Monte Carlo results for problem B.

Pairs Steps ) Eigenvalue
500 2000 2000 200 000 0.100 0.040 0.040 1.7476968)
1000 2000 2000 500 000 0.100 0.040 0.020 1.747388Y)

merical solution, one can obtain distributions that can beN=500 can be combined with another havifg0.02 and
compared directly with the Monte Carlo method. The nor-N=1000 by linear extrapolation. The result of this procedure
malizations are arbitrary so what is required is that ratios ofs an eigenvalue of 1.747 10 with a standard deviation of
histograms be constant, even when the nodal line is crosséd000 13. The agreement, which appears good, is in fact 3.3
and the signs of both histograms change together. That cogtandard deviations. We believe that the explanation lies in
dition is well satisfied for this calculation and for all the the time step and the population errors and in the extrapola-
others. The ratios are constant within a few percent except 40N, but have not chosen to pursue the exact elucidation of
the edges where the distributions become small. the errors and their possible interdependence. We believe

In the usual analysis of the decay of the signal to noise iﬁhat the results do demonstrate the correct solution of the

the Monte Carlo treatment of fermion problems, the ratio omedel problem.

; : ; ; - In attempt to create one more test calculation that would
the eigenvalues for antisymmetric to symmetric SOIUtlonsmduce the appearance of instability, Koch invented the set of

plr?))é)slear‘nke?e:/?l)edsIIardgigcrl?;Ses dmtilfaerg:; ‘:Lrj?r?(ljjmomotgsf).elrll t{1§)otential centers shown in Table VII. These extend the range
p P y ' 10 large distances. The positions of the centers are also

In an attempt to find a calculation that is more challenging iNghown in Fig. 1. The centers are located on two spirals in-

that. respect, we creatgd another t_’y simply scaling down thg,nqeq 1o permit positive and negative walkers to drift along
positions of the potential centers in Table Il by a factor of yitferent spirals and interchange positions.

0.3 to get the coordinates in Table V. The eigenvalue ob- | any case, no evidence of an instability in the Monte
tained by numerical relaxation is 1.747 53, so that the aim Ota”o calculations was seen in any of many |ong runs with
increasing the eigenvalue towards a value of 2.00 has beedifferent program-related parameters. The large extent of the
achieved. There was no indication of any unstable tendencotential poses difficulties for both numerical relaxation and
in the Monte Carlo calculations, so it is not at all clear thatMonte Carlo: the convergence is slow and more computer
shrinking the scale of the potential in this way has posed anyime was consumed in assuring reasonable convergence. The
additional difficulties. An effect of the rescaling of the po- eigenvalue obtained from numerical relaxation was
tential is to make it smoother, that is to say more like al.018 497. Monte Carlo results are shown in Table VIII.
harmonic oscillator, so that variational estimates based on adaking the same assumptions as before that the population
anisotropic Gaussian are rather accurate. In that sense, ttigrrections and time step corrections are independent and
rescaled potential is not a good test of the generality of théinear, we extrapolate to an eigenvalue of 1.016(1424.
new method. The discrepancy corresponds to 1.56 standard errors of the
Table VI gives the results of the Monte Carlo calculationsMonte Carlo result.
for this problem. In designing this set of calculations, it was
assumed that the time step error is proportionad t;md the
population bias proportional to W, and that the two are Although the problems actually solved in this study are
independent of each other. Thus a run widk0.04 and only two dimensional, we believe that their correct solution

VII. CONCLUSIONS

TABLE VII. Potential centers for problem C.

8.00000 0.00000 —8.00000 0.00000 7.74250 —1.46900
—7.74250 1.46900 7.21210 —2.86260 —7.21210 2.86260
6.42430 —4.12820 —6.42430 4.12820 5.40510 —5.21580
—5.40510 5.21580 4.19090 —6.07970 —4.19090 6.07970
2.82770 —6.68110 —2.82770 6.68110 1.37060 —6.99020
—1.37060 6.99020 —0.11850 —6.98820 0.11850 6.98820

—1.57270 —6.66970 1.57270 6.66970 —2.92280 —6.04350
2.92280 6.04350 —4.10060 —5.13450 4.10060 5.13450
—5.04210 —3.98330 5.04210 3.98330 —5.69200 —2.64620
5.69200 2.64620 —6.00740 —1.19410 6.00740 1.19410
—5.96190 0.29050 5.96190 —0.29050 —5.54960 1.71660
5.54960 —1.71660 —4.78780 2.98980 4.78780 —2.98980
—3.71960 4.01810 3.71960 —4.01810 —2.41450 4.71930
2.41450 —4.71930 —0.96680 5.02880 0.96680 —5.02880
0.50730 4.90830 —0.50730 —4.90830 1.87660 4.35370

—1.87660 —4.35370 3.00470 3.40270 —3.00470 —3.40270
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TABLE VIII. Monte Carlo results for problem C.

Pairs Steps ) Eigenvalue
2000 20000 5000 50000 0.500 0.200 0.100 1.023688)
1000 20000 5000 100000 0.500 0.200 0.200 1.030688)

means that the principle introduced in this paper, namely, It would be useful to find a way to incorporate this basic
pair dynamics with correct marginal dynamics for eachidea into a Green’'s-function Monte Carlo approached so as
member of a pair and with correlations that vary with theto have a fermion algorithm with no time-step error. The new
location of the pair does indeed break the plus-minus symmethodology should prove applicable to Monte Carlo meth-
metry and offers the possibility of accurate and stable fermods for systems at finite temperature such as path integral
ion Monte Carlo calculations in continuum systems. methods.

Clearly much work remains before it can be said that a Finally, we conjecture that the idea of variable correlation
practical method has been demonstrated that works efffor pairs of systems will be applicable to other quantum
ciently on a variety of systems and for large numbers 011\/Ipnte Carlo methods. The challenge posed by treating fer-

particles. The method needs to be demonstrated on modg]'oNs can be viewe_d as the .r}eed to t_)reak an algorithmic
and realistic few- and many-body systems in three dimenSYMmetry between. S|gngd entities, a_nd it may be possible to
sions treat other calculations in this class in the same way.

Many technical issues remain to be explored: When the
importance functions used to bias the trajectories are not
eigenfunctions, then pairs will occasionally break or new un- | am grateful to many colleagues for helpful conversa-
paired walkers will be created. This is not thought to be ations, especially Bernard Bernu, David Ceperley, Geoffrey
major difficulty, but a means for re-pairing walkers needs toChester, Stefan Koch, Zhiping Liu, Richard Martin, Cyrus
be developed. It is useful to use larger ensembles of corrddmrigar, and Shiwei Zhang. It is a pleasure to thank Jim
lated walkers than pairs? In more than two dimensions, manianger and the Institute for Theoretical Physics for their hos-
more classes of correlations can be invoked. We can onlpitality; much of the work in this paper was carried out dur-
guess whether their use will improve the efficiency and scaling a visit to the Institute for a Workshop organized by
ability of the method. The ideas used here for choosing bePavid Ceperley and Jim Gubernatis. | am grateful to the
tween different classes of correlations are primitive. BothNational Science Foundation for their support of that Work-
experience and theory will be needed. shop and my participation in it. The work was also supported

Our experience so far suggests strongly that a “seconth part by the National Science Foundation under Grant No.
stage importance function” for pairs can be defined that iSDMR-9200469. This research was conducted using the re-
distinct from the original importance function. This new sources of the Cornell Theory Center, which receives major
function would be used, for example, to bias the dynamics ofunding from the National Science Foundation, and New
pairs to prevent their annihilation. In general, its use shouldvork State. Additional funding comes from the Advanced
improve the efficiency and scalability to large systems of theResearch Projects Agency, the National Institutes of Health,
method. At the moment, only very preliminary ideas existIBM Corporation, and other members of the center's Corpo-
about the nature of such a new pair importance function. rate Research Institute.
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